Role of CD271 enrichment in the isolation of mesenchymal stromal cells from umbilical cord blood.
نویسندگان
چکیده
Isolation of mesenchymal stromal cells (MSCs) from the umbilical cord blood (UCB) has a success rate of 25% and is frequently contaminated by osteoclast-like cells (OLCs). CD271 is a well-known marker for the enrichment of bone marrow (BM) MSCs. We have assessed the effect of CD271 isolation on the isolation rate of MSCs from UCB. Twenty-one samples of UCB were collected. Ten samples of UCB and five of BM underwent CD271 isolation using magnetic activated cell sorting. The other 11 UCB samples were used as the control. The isolated cells were cultured and MSC isolation was confirmed with respect to morphology, flow cytometry, adipogenic and osteogenic differentiation potentials. CD271-positive UCB cells did not show outgrowth despite 54.5% MSCs isolation in the non-enriched portion. No OLC was noted in the CD271-enriched group, but 66% of the non-enriched samples were contaminated. All the CD271-positive BM cells formed MSC colonies. Although the per cent of CD271+ cells showed no difference between BM-mononuclear cells (MNCs) and UCB-MNCs, the haematopoietic marker, CD45, was found in a higher percentage of CD271-positive UCB-MNCs. The results of our study indicate that, although CD271 is a valuable marker for enrichment of MSCs from BM, it does not contribute to isolation of MSCs from UCB. In this source, most of the CD271+ cells are from haematopoietic origin, and possibly the process of isolation may eliminate the very low frequent MSCs and the isolation therefore fails.
منابع مشابه
Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions
Objective(s): Umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) are ideally suited for use in various cell-based therapies. We investigated a novel induction protocol (NIP) to improve the neuronal differentiation of human UCB-MSCs under appropriate conditions. Materials and Methods: This experimental study was performed in Iranian Blood Transfusion Organization (IBTO), Tehran, I...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملStudy of telomerase activity, proliferation and differentiation characteristics in umbilical cord blood mesenchymal stem cells
In recent years, considerable advances have been made in the field of regenerative medicine. Unlikeembryonic stem cells, which pose the problems of ethical concerns and cause severe immunological reactions as well as neoplasma formation after transplantation, umbilical cord blood is a primitive source ofmesenchymal stem cells that covers the benefits of both embryonic and adult stem cells. It h...
متن کاملتاثیر آشیانههای جفتی شبیهسازی شده با داربست پلی لاکتیک اسید در تکثیر سلولهای بنیادی خونساز مشتق از بافت جفت انسانی
Background and Objective: Nowadays, although umbilical cord blood is a commonly used source of hematopoietic stem cell, its low frequency of these cells is the main factor limiting its clinical application. The transplantation of hematopoietic stem cells derived from placenta tissue along with umbilical cord blood cells of the same sample may be an appropriate approach to solve this problem. In...
متن کاملCo-culture of Umbilical Cord-derived Hematopoietic and Mesenchymal Stem Cells on Protein-Coated poly-L-Lactic Acid Nanoscaffolds
Background and purpose: Umbilical cord blood (UCB) is a source of Hematopoietic stem cells (HSCs) and has received a lot of attention due to its availability, renewal capacity, proliferation rate, and differentiation potential. The main limitation of using these cells is their low quantity in one unite of UCB. To overcome this, HSCs co-culturing with UCB derived mesenchymal cells (MSCs) is a pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell biology international
دوره 37 9 شماره
صفحات -
تاریخ انتشار 2013